

Fertilizantes de eficiencia mejorada y su uso en agroecosistemas

Dr. Martín Torres Duggan⁽¹⁾

(1) Tecnoagro; Girardot 1331 (1427) CABA

¿De qué voy a hablar?

1. Introducción a los fertilizantes de eficiencia mejorada (FEM)

- (i) Conceptos y características de los FEM
- (ii) Eficiencia de fertilización y posicionamiento agronómico de los FEM

2. Bases del funcionamiento de los fertilizantes de eficiencia mejorada

- (i) Modelo de liberación de nutrientes
- (ii) El contexto de uso de los fertilizantes de los FEM

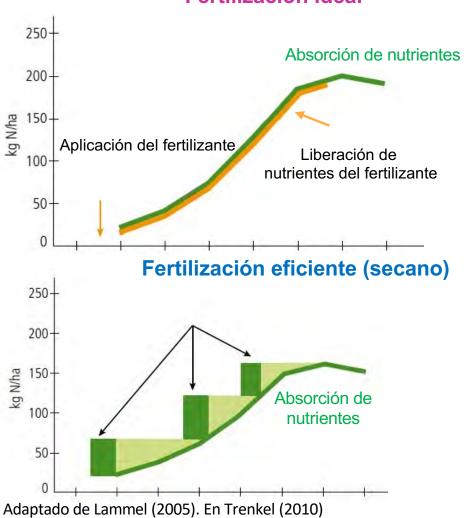
3. Caracterización de estabilizadores de nitrógeno y resultados de su aplicación en maíz en secano en la Región Pampeana

- (i) Inhibidores de la ureasa
- (ii) Inhibidores de la nitrificación

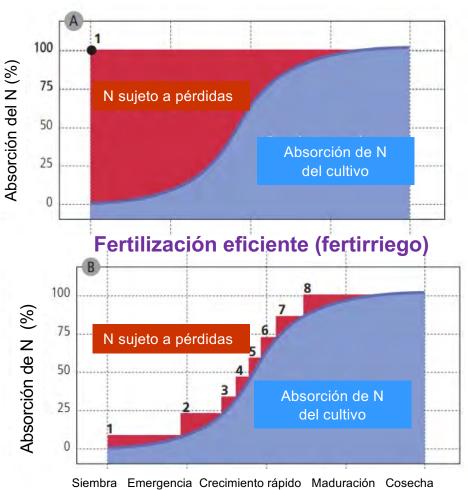
¿Qué son los fertilizantes de eficiencia mejorada (FEM)?

Concepto general

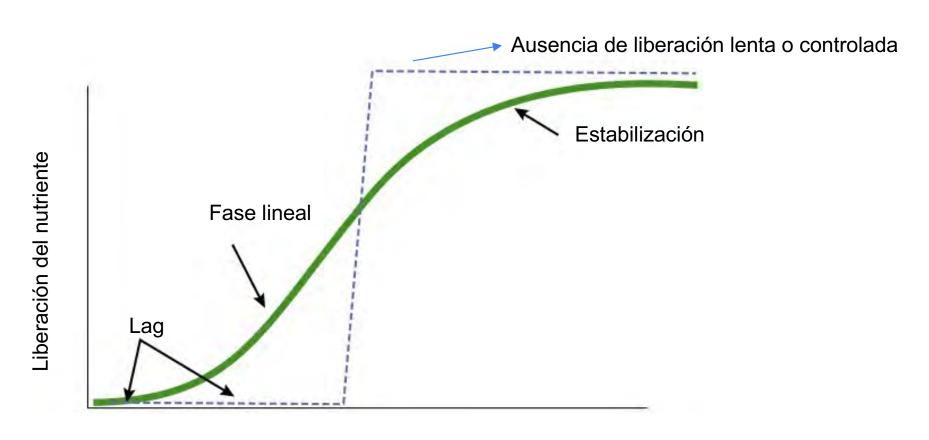
Los fertilizantes de eficiencia mejorada (FEF) se denominan a todos aquellos fertilizantes que permiten aumentar la eficiencia de uso de los nutrientes aplicados, mejorando la productividad de los cultivos y la sustentabilidad en el manejo de los nutrientes a través de la reducción de pérdidas de éstos fuera del sistema suelo-cultivo.


¿Cómo se logra?

- (i) Modificación de la morfología externa o interna de los gránulos
- (ii) Uso de aditivos que reducen las pérdidas de nutrientes fuera del sistema suelo-cultivo y aumentan su eficiencia de uso


Modelo conceptual de la "liberación lenta"

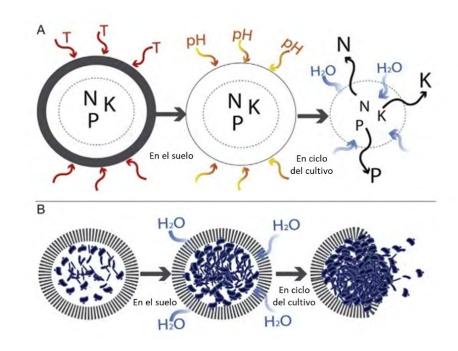
Fertilización ideal


Fertilización real

Adaptado de Doerge et al. (1991). En Drechsel et al. (2015)

Modelo conceptual de fertilizantes de liberación lenta o controlada

Adaptado de Lammel (2005). En Trenkel (2010)



Fertilizantes de liberación controlada

Modelo de acción tradicional

H₂O Resin coating El agua se mueve hacia dentro del gránulo Resin coating Los nutrientes se disuelven Los nutrientes se mueven a través del coating

Modelos avanzados de entrega de nutrientes

Adaptado de Trenquel (2010). En: Drechsel et al. (2015)

Calabi-Foody et al. (2018)

El contexto hace al uso de los Fertilizantes de Eficiencia Mejorada (FEM)

Tipo de FEM

Suelo y su condición de fertilidad

Sistema de producción

Condición ambiental durante la aplicación

- (i) Los beneficios agronómicos y ambientales de los FEM se deben evaluar según el contexto de uso (e.g tipo de suelo, cultivo o secuencia de cultivos, condición ambiental, etc.)
- (ii) La condición predisponente del suelo o del ambiente biofísico determinan el potencial de uso de los fertilizantes de eficiencia mejorada

¿Qué son los estabilizadores de nitrógeno?

¿Cómo funcionan?

¿Cuáles son sus beneficios?

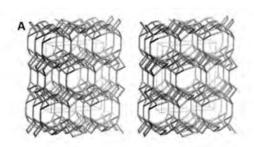
Estabilizadores de nitrógeno: bases funcionales

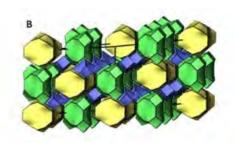
Inhibidores de la ureasa

Inhibidores de la nitrificación

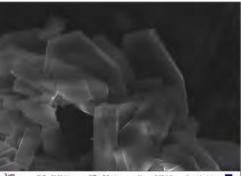
Tipos de estabilizadores de nitrógeno

Inhibidores de la ureasa


Ingrediente activo **Desarrollo original** Uso agronómico **NBPT** Koch Group Mezcla con urea o fertilizantes que la contengan (e.g. UAN) **NBPT+DCD** Koch Agronomic Mezcla con urea y otros fertilizantes Services amoniacales **NBPT+Duromide** Koch Agronomic Mezcla con urea o UAN Services **NBPT+NPPT** Apto para su mezcla con urea Basf


Inhibidores de la nitrificación

Ingrediente activo	Desarrollo original	Uso agronómico
Nitrapyrin	Corteva Agriscience	Diferentes formulaciones adecuadas para ser mezcladas con fertilizantes nitrogenados sólidos, N anhidro, UAN, etc.
DCD	Showa Denko	Apto para su mezcla con urea u otros fertilizantes nitrogenados
DMPP	Basf	Apto para su mezcla con urea u otros fertilizantes nitrogenados
Pronitridina	Koch Agronomic	Uso en mezclas con UAN o N anhidro
	Services	

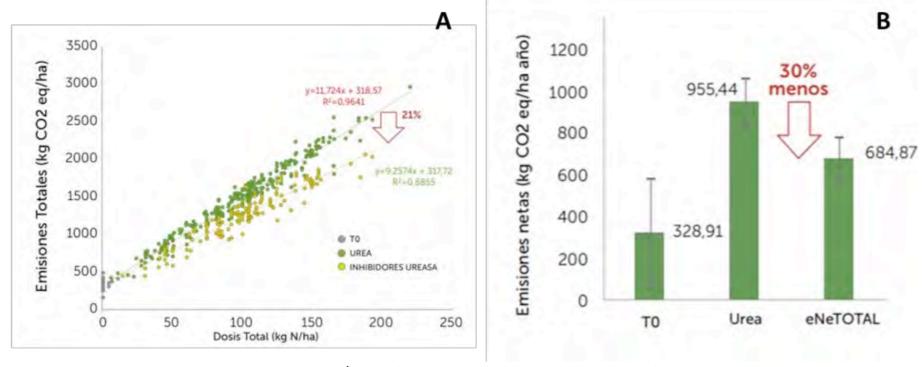

Ampliado y adaptado de Trenkel (2010), Reetz (2016) y Drechsel et al. (2015)

Zeolitas como estabilizadores de N

Estructura de la Z (clinoptilolita-heulandita). A: Microestructura cristalina. B: Micromorfología natural en 3D (Database of Zeolite Structures disponible en http://izasc.ethz.ch/fmi/xsl/IZA-Sc/Tilings/CLO.pdf)

Fotografías propias de roca zeolítica (muestra de mano) y microfotografía electrónica

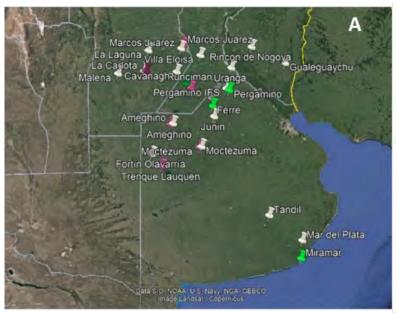
Experiencias de uso de inhibidores de la ureasa en la Región Pampeana: <u>impacto productivo</u>

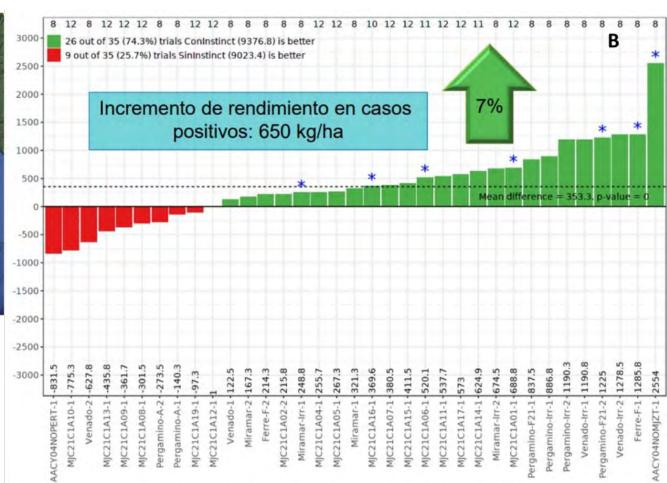


- ✓ 90 experimentos a campo realizados por área de I+D
 de Profertil S.A
- √ 12 años (campañas 2008/09-2019/20)
- √ 47 localidades
- √ 67% de frecuencia de respuestas positivas
- √ 640 kg/ha de respuesta media

Experiencias de uso de inhibidores de la ureasa en la Región Pampeana: <u>beneficios ambientales</u>

Emisiones totales (kg de CO₂ eq/ha)(A) y netas (B) de la fertilización con urea y urea tratada con nhibidires de la ureasa. Fuente: Profertil 2020.


https://www.profertil.com.ar/wp-content/uploads/2021/06/BT-30-ETP-en-maiz.pdf



Respuesta al agregado de nitrapyrin

en la Región Pampeana

Gentileza Corteva Agriscience

Consideraciones finales

- 1. Los fertilizantes de eficiencia (FEM) mejorada "expresan" su eficiencia potencial cuando se los aplica bajo determinadas condiciones ambientales predisponentes que justifican su uso (i.e. pérdidas de nutrientes)
- 2. La aplicación de los FEM, al igual que el de cualquier fertilizante, se optimiza cuando se integra dentro del manejo integrado de suelos y nutrientes
- 3. La mayor parte de la literatura internacional y nacional muestran resultados atractivos del uso de estabilizadores de N, tanto en términos de respuesta en rendimiento como en beneficios ambientales
- 4. Si bien se postula a los "fertilizantes inteligentes" como la "evolución" de los FEM, la verdadera evolución deriva de la "fertilización inteligente".

MUCHAS GRACIAS!

